
A Divide-and-Conquer Approach to 3D Object Reconstruction
from Line Drawings

Yu Chen, Jianzhuang Liu
Department of Information Engineering
The Chinese University of Hong Kong

{ychen6,jzliu}@ie.cuhk.edu.hk

Xiaoou Tang
Microsoft Research Asia

Beijing, China
xitang@microsoft.com

Abstract

3D object reconstruction from a single 2D line drawing
is an important problem in both computer vision and graph-
ics. Many methods have been put forward to solve this prob-
lem, but they usually fail when the geometric structure of a
3D object becomes complex. In this paper, a novel approach
based on a divide-and-conquer strategy is proposed to han-
dle 3D reconstruction of complex manifold objects from sin-
gle 2D line drawings. The approach consists of three steps:
1) dividing a complex line drawing into multiple simpler
line drawings based on the result of face identification; 2)
reconstructing the 3D shapes from these simpler line draw-
ings; and 3) merging the 3D shapes into one complete ob-
ject represented by the original line drawing. A number of
examples are given to show that our approach can handle
3D reconstruction of more complex objects than previous
methods.

1. Introduction
A line drawing is the 2D projection of the edges of an ob-

ject. Humans have no difficulty in perceiving the 3D geom-
etry from a 2D line drawing. Emulating this ability is an im-
portant research topic in both computer vision and graphics.
Much work has been carried out on 3D reconstruction from
line drawings in the past three decades. However, when a
line drawing becomes complex, previous methods usually
fail to obtain a desired object due to two reasons: 1) the
methods are not good enough to formulate complex 3D re-
construction; and/or 2) the algorithms can easily get trapped
into local optima.
This paper proposes a novel divide-and-conquer ap-

proach to 3D reconstruction from 2D line drawings with
hidden lines visible, representing manifolds. Manifolds be-
long to a class of most common solids, the definition of
which is given in Section 3. Our approach is based on the
fact that a complex object is in general the combination of

Fig. 1. Separating a line drawing into three simpler ones.

less complex objects, each of which is easier to reconstruct.
Fig. 1 shows an example where a relatively complex line
drawing is decomposed into three simpler ones. Obviously,
the 3D reconstruction from each of the three is an easier job
than the reconstruction from the original line drawing. Our
approach is summarized as three steps: 1) separating a com-
plex line drawing into less complex ones based on the result
of face identification from the complex line drawing; 2) re-
constructing the 3D shape from each of these simpler line
drawings; and 3) merging these 3D shapes into a complete
object.
Line drawings discussed in this paper are with hidden

lines visible. These line drawings can be generated by
sketching on the screen with a mouse or a tablet PC pen and
on paper with a pen. Compared with line drawings without
hidden lines, they allow the reconstruction of complete and
more complex objects. Much work concerning line draw-
ings with hidden lines has been published in computer vi-
sion literature [14], [20], [29], [30], [4], [23], [17], [18],
[19], [26], [27], and in CAD and graphics [1], [3], [9], [10],
[11], [16], [21], [22], [31], [32]. The applications of the re-
construction from this kind of line drawings include: 1) pro-
viding a flexible sketching interface in current CAD system
[16], [3], [10]; 2) providing a 2D sketch query interface for
3D object retrieval from large databases or from the internet
[21], [22], [6]; 3) interactive generation of 3D models from

1

978-1-4244-1631-8/07/$25.00 ©2007 IEEE

images [11], [31]; and 4) building rich databases for object
recognition systems and reverse engineering algorithms for
shape reasoning [3].

2. Related Work
The earliest work towards 3D reconstruction from single

line drawings is line labeling, which focuses on finding a
set of consistent labels from a line drawing to test the cor-
rectness and/or realizability of the line drawing [8], [12],
[30], [10], [29], [28], [30], [23], but it does not explicitly
recover a 3D object from a line drawing. Most 3D recon-
struction methods from a line drawing assume that the face
topology of the line drawing is known in advance. This
information can greatly reduce the complexity of the recon-
struction. Face identification is not a trivial problem, and
many methods have been proposed to find faces from a line
drawing [1], [3], [14], [27], [17], [18], [19], [15].
3D reconstruction from line drawings is usually formu-

lated as an optimization problem. Marill proposed the rule
of minimizing the standard deviation of the angles (MSDA)
in a reconstructed object to inflate a simple 2D line draw-
ing into a 3D object [20]. His idea was followed by other
researchers and more criteria to help reconstruction are pro-
posed in [31], [16], [14], [4], [5], [26], and [9]. The methods
in [28], [25], and [24] use line labeling and shading infor-
mation to recover the visible surfaces of 3D polyhedra in
images from the edges of the polyhedra. Recently, some
attempts [32], [5] have been made to recover a complete
solid from a line drawing with visible lines only, but these
methods are only applicable to simple objects.
Lipson and Shpitalni’s method [16] can handle objects of

the most complexity among the previous methods. It uses
thirteen criteria for the reconstruction, such as MSDA, face
planarity, and line parallelism. From our experiments, we
found that their algorithm fails to obtain an expected 3D
object from a line drawing when the geometry of the object
becomes more complex. In fact, we can see this problem
in the previous methods from the relatively simple recon-
structed 3D objects shown in the previous papers.

3. Assumptions and Terminology
The following assumptions are made before we formu-

late the reconstruction problem.

Assumption 1 The object represented by a line drawing is
a manifold whose faces are all planar.

Assumption 2 A line drawing is the parallel or near-
parallel projection of a wireframe manifold in a generic
view where all the edges and vertices of the manifold are
visible, and it can be represented by a single edge-vertex
graph1.

1The crossing point of two lines is not a vertex.

1v

5v
4v

3v2v

9v
8v

7v6v

18v

19v

11v

15v

10v

14v

12v13v

16v17v

21v20v

1v

9v
8v

7v6v

5Bv
5 Av

4Bv
4 Av

3Bv
3Av

2 Av
2Bv

12v

16v

15v

11v
10v

13v

17v

14v

(a) (b)

Fig. 2. Illustration of some terms. (a) Cycle
(v1, v3, v4, v1) is a real face. Cycles (v2, v3, v4, v5, v2)
and (v6, v7, v20, v8, v18, v9, v6) are two internal faces.
Edges {v18, v19} and {v20, v21} are two artificial lines in-
dicating the coplanarity of cycles (v6, v7, v8, v9, v6) and
(v10, v11, v12, v13, v10). Two real faces (v2, v3, v7, v6, v2)
and (v1, v3, v4, v1) are connected. Edge {v3, v7} and face
(v1, v2, v3, v1) are connected. (b) The line drawing in (a) is
separated into three simpler line drawings.

Assumption 3 All the faces and internal faces of the man-
ifold a line drawing represents have been available.

So far there has been little work on 3D reconstruction
from single 2D line drawings representing objects with
curved faces. In this paper, we focus on a class of most
common solids, called manifolds, whose faces are planar.
A line drawing in a generic view means that no two ver-
tices appear at the same position, no two edges overlap in
the 2D projection plane, and 3D non-collinear edges are not
projected as collinear edges. We can have Assumption 3 be-
cause the algorithm in [18] can be used to find faces from a
line drawing representing a manifold. Internal faces are the
places where we separate a line drawing and their definition
is given below. These internal faces can be inferred from the
faces found. Finding internal faces is not a straightforward
problem. Due to the limitation of space, we will discuss
how to identify internal faces in another paper.
For better understanding the content in the following sec-

tions, we here summarize the terms that will appear in the
rest of the paper. We illustrate many of these terms with the
line drawings in Fig. 2.

• Manifold. Amanifold, or more rigorously 2-manifold,
is a solid where every point on its surface has a neigh-
borhood topologically equivalent to an open disk in the
2D Euclidean space [2]. In this paper, we consider
such manifolds that are made up by flat surfaces. A
basic property of a manifold is that each edge is shared
exactly by two faces [13].

• Face. A face is one of the flat surfaces that make up a
manifold. In what follows, We will call it a real face
to distinguish it from an internal face defined below.

• Internal face. An internal face is a face inside a man-
ifold only with its edges visible on the surface. It is
not a real face but is formed by gluing two manifolds
together.

• Edge. An edge of a line drawing is the intersection of
two non-coplanar real faces. An edge e is also denoted
by {ve1 , ve2} where ve1 and ve2 are two vertices of e.

• Artificial line. An artificial line is a line used to indi-
cate the coplanar relationship of two cycles. It is gen-
erated by the designer of the sketch.

• Cycle. A cycle is formed by a sequence of vertices
v0, v1, · · · , vn, where n ≥ 3, v0 = vn, the n vertices
are distinct, and there exists an edge connecting vi and
vi+1 for i = 0, 1, · · · , n − 1. A cycle is denoted by
(v0, v1, · · · , vn). A face is a cycle.

• Vertex set of a cycle. The vertex set V er(C) of a cycle
C is the set of all the vertices of C.

• Edge set of a cycle. The edge set Edge(C) of a cycle
C is the set of all the edges of C.

• Simple line drawing. A line drawing is called simple
if there exists no internal face in the manifold that the
line drawing represents.

• Connected faces. Two faces fa and fb are called con-
nected if V er(fa) ∩ V er(fb) 6= ∅.

• Connected edge and face. An edge e = {ve1 , ve2} is
called connected to a face f if {ve1 , ve2}∩V er(f) 6= ∅
and e /∈ Edge(f).

• Partition of a set. Given a non-empty set S, a partition
PS = {S1, S2} is a set of two non-empty subsets S1
and S2 of S such that S1 ∪ S2 = S and S1 ∩ S2 = ∅.

4. Separation of a Line Drawing
There are many ways to partition the edge-vertex graph

of a line drawing into multiple smaller graphs. However,
these graphs are meaningless if they do not represent real
objects. Obviously, it is desirable that each of the separated
line drawings still represents a manifold. We use this as a
requirement to design a method for line drawing separation.
By observing numerous complex objects, especially man-
made objects, we can see that most of them are formed by
gluing two or more smaller objects together, resulting in
internal faces. Therefore, our strategy is to find the internal
faces from a line drawing first and then separate it along the
internal faces.

*
1f

*
4f

*
3f

*
2f

Fig. 3. Illustration of four internal faces f∗1−4.

4.1. Internal Faces

An internal face is where two separated manifolds are
glued together. Fig. 3 shows four internal faces. An internal
face may be non-planar. However, we treat all the internal
faces as planar in this paper. This is true for most of the
practical objects with internal faces. The advantage of this
treatment is that when an object is separated along an inter-
nal face, this internal face becomes a real planar face.
Let f1 and f2 be two real faces in two separated mani-

folds that are glued together generating an internal face f∗.
LetC1 andC2 be the two cycles corresponding to f1 and f2,
respectively, in the original line drawing. We can classify
f∗ into one of the two types: 1) C1 and C2 have no contact,
and 2) C1 and C2 have contact (partly or completely). In
Fig. 3, f∗1 belongs to type 1 and f∗2 , f∗3 , and f∗4 belong to
type 2. Note that for f∗4 , C1 and C2 merge into one in the
line drawing.
When f∗ belongs to type 1, since C1 and C2 are not

touched, additional information must be used to indicate
the coplanarity of C1 and C2 so that correct face identifica-
tion and reconstruction from the line drawing are possible.
Using artificial lines to indicate this coplanarity is the sim-
plest and most straightforward way, which has been used in
solid modeling [1], [18]. Two artificial lines connecting two
edges of C1 to two edges of C2 are added by the user who
draws the line drawing2. For internal faces of type 1, if we
can detect the related artificial lines and remove them, then
we can separate the line drawing along these internal faces.
The following proposition is for this detection.

Proposition 1 Let {v, va}, {v, vb}, and {v, vc} be the three
edges connected to a vertex v of degree 3. If {v, va} and
{v, vb} are collinear, then {v, vc} is an artificial line.

2Note that one artificial line is not enough to indicate the coplanarity.
According to Proposition 1, we can find and remove artificial lines, as
shown in Fig. 2. From Fig. 2(b), C1 = (v6, v7, v8, v9, v6) and C01 =
(v8, v9, v5B, v4B, v8) are both identified as real faces from the middle
separated line drawings. With only {v18, v19}, we cannot know if C1 or
C01 is the internal face. However, we know it is C1 with both {v18, v19}
and {v20, v21}.

IBM_USER
附注
two types of internal faces:1. not touched - need extra information2. touched

IBM_USER
附注
判断Artificial line的标准

v

cv

av bv
1f

2f 3f

.
.
.

.
.
.

Fig. 4. Part of a line drawing with an artificial line {v, vc}.

Proof. Assume, to the contrary, that {v, vc} is not an artifi-
cial line but an edge, as shown in Fig. 4. Since the line draw-
ing denotes a manifold, every edge is passed through by two
faces and hence three faces f1, f2 and f3 pass through v (see
Fig. 4). According to the assumption that the line drawing
is the projection of a manifold in a generic view, the three
vertices va, v, and vb are also collinear in 3D space. Thus,
the straight line vavvb and vertex vc define a plane in 3D
space, implying that f2 and f3 are coplanar, which contra-
dicts the definition that an edge is the intersection of two
non-coplanar real faces. Therefore, {v, vc} is an artificial
line.

With Proposition 1, all the artificial lines can be detected
and removed. Note that when an artificial line is removed,
its two vertices in the original line drawing are also re-
moved. For the example in Fig. 4, the two collinear edges
{v, va} and {v, vb} become one edge {va, vb} after v is re-
moved. An internal face of type 1 turns out to be a real face
in the separated line drawing. The face (v6, v7, v8, v9, v6)
in Fig. 2(b) is such an example.

4.2. Separating a Line Drawing along Internal
Faces of Type 2

In this section, we handle the problem of separating a
line drawing along internal faces of type 2. For concision,
we simply use “internal face(s)” to denote “internal face(s)
of type 2”. From an internal face, we separate the line draw-
ing by recovering the two touching faces that form the in-
ternal face.
Given a line drawing and its identified real and internal

faces, it is not a trivial problem to separate the line drawing.
The main difficulties are: 1) the 3D geometry of the man-
ifold is not available yet; 2) in the 2D projection, the lines
connecting to an internal face can be in any direction with
respect to the internal face; and 3) when a line drawing is
separated into two parts along an internal face, for a line that
is connected to the internal face in the original line drawing,
it is not obvious to which part this line should be connected.
For example, the correct separation of the line drawing in
Fig. 5(a) is given in Fig. 5(b). If the edge {v1, v2} is not

(a) (b)

1Bv
1v

2v

4v

3v

1Av

2v
3v

4v

Fig. 5. An example of separating a line drawing along an internal
face. (a) The original line drawing with the internal face marked.
(b) The correct separation. The hidden edges are shown in dashed
for easier observation.

connected to v1A but to v1B, a wrong separation then re-
sults. It is wrong because the face (v1, v2, v3, v4, v1) is bro-
ken after such a separation.
Through the observation of different line drawings, we

find that the human separation of a line drawing along an
internal face f∗ always satisfies two conditions:

Condition 1 All the real faces connected to f∗ are parti-
tioned into two sets, F0(f∗) and F1(f∗).

Condition 2 All the faces that an edge connected to f∗ (not
including the edges of f∗) is a part of will only appear in
one of the two faces sets, either F0(f∗) or F1(f∗).

Condition 1 guarantees that each real face connected to f∗
is not broken. Condition 2 implies that two real faces shar-
ing an edge that is connected to f∗ always appear in the
same face set F0(f∗) or F1(f∗). Along all the internal
faces of type 2 in the line drawings in Fig. 3 and Fig. 5(a),
our intuitive separations of the line drawings are shown in
Fig. 6. We can verify that all these separations satisfy these
two conditions. Mathematically, we formulate such a sepa-
ration in the following definition, and call it a partition along
an internal face.

Definition 1 Let f∗ be an internal face, F(f∗) = {fi}mi=1
be the set of all the m real faces connected to f∗, and
E(f∗) = {ei}ni=1 be the set of all the n edges connected
to f∗. A partition along f∗ is to find a face set parti-
tion PF(f∗) = {F0(f∗),F1(f∗)} and an edge set parti-
tion PE(f∗) = {E0(f∗), E1(f∗)} simultaneously such that
for any e ∈ Es(f∗), it holds that e /∈ Edge(f),∀f ∈
F1−s(f∗), where s = 0, 1. This partition along f∗ is de-
noted by Pf∗ = (PF(f∗), PE(f∗)).

The following two propositions show that the partition
along an internal face is unique, and after the partitions, the
resulting line drawings still represent manifolds.

IBM_USER
附注
疑问：截而不断的情况怎么处理

(b)(a)

Fig. 6. (a) Partitions along f∗2 , f∗3 , and f∗4 in Fig. 3. (b) Partitions
along all the internal faces in Fig. 5(a).

Proposition 2 The partition along an internal face of a line
drawing representing a manifold exists and is unique.

Proposition 3 After the partition along an internal face,
the line drawing (line drawings) still represents (represent)
a manifold (manifolds).

The proofs of Proposition 2 and Proposition 3 can be
found in [7]. Definition 1 actually implies an algorithm to
find the partition Pf∗ = (PF(f∗), PE(f∗)) along an inter-
nal face f∗. The outline of the algorithm is given in Algo-
rithm 1.
Since there may be more than one internal face in the

original line drawing, the algorithm is run repeatedly until
all the internal faces have been split. For the line drawing in
Fig. 5(a), four partitions along the four internal faces sepa-
rate it into four simpler line drawings.

5. 3D Reconstruction
After separating a complex line drawing along all its in-

ternal faces of types 1 and 2, we obtain several simpler line
drawings, each representing a part of the manifold. Our
strategy to obtain the 3D manifold is to reconstruct the 3D
shapes from these simpler line drawings and then merge
these 3D shapes together.

5.1. 3D Reconstruction from a Line Drawing
As most of the previous methods, we consider a line

drawing to be a parallel or near parallel projection of a 3D
manifold. The x- and y-coordinates of each vertex are al-
ready known, and only the depth (z-coordinate) has to be
derived.
Reconstructing the 3D shape from each separated line

drawing is tackled by an optimization-based approach in
which the objective function contains several constraints.
These constraints try to emulate the human perception of a
2D line drawing as a 3D object. In this paper, we adopt five
constraints: minimizing the standard deviation of angles in

Algorithm 1 Partition along an internal face.

1. Set F0(f∗), F1(f∗), E0(f∗), and E1(f∗) to be empty-
sets;

2. Put all the real faces connected to f∗ into F1(f∗);
3. Remove any one face from F1(f∗) and put it into
F0(f∗);

4. for every f ∈ F1(f∗) do
5. if f and any one real face in F0(f∗) share an edge

connected to f∗(not including the edges of f∗) then
6. Remove f from F1(f∗), put it into F0(f∗), and

goto 4;
7. Put all the edges that are connected to f∗ and in the
faces in F0(f∗) and F1(f∗) into E0(f∗) and E1(f∗),
respectively.

the reconstructed object [20], face planarity [14], line par-
allelism, isometry and corner orthogonality [16], which are
denoted by α1, α2, α3, α4, and α5, respectively. The objec-
tive function to be optimized is defined as:

f(z1, z2, · · · , zN) =
5X
i=1

λiαi, (1)

where λ1−5 are weighting factors, and z1−N are the depths
of all theN vertices of a line drawing. We perform the min-
imization using a hill-climbing method presented in [14].

5.2. Merging 3D Manifolds

When all the 3D parts are ready, the next step is to com-
bine them in an appropriate way so that the complete 3D
object is obtained. The basic idea of our merging process is
to glue the parts along the internal faces of the original line
drawing.
Suppose that two 3D shapes Oa and Ob share an inter-

nal face f∗ that consists of K vertices in the original line
drawing, and the depths of these vertices in Oa and Ob

are za1, za2, · · · , zaK and zb1, zb2, · · · , zbK , respectively.
Since Oa and Ob are reconstructed independently, we usu-
ally have a large difference between zai and zbi, 1 ≤ i ≤ K,
and different sizes of f∗ in Oa and Ob. We align them ac-
cording to the depth means (μa and μb) and standard devia-
tions (σa and σb) of f∗ in Oa and Ob, where

μj =
1

K

KX
i=1

zji, j = a, b, (2)

σj =

vuut 1

K

KX
i=1

(zji − μj)2, j = a, b. (3)

IBM_USER
高亮

IBM_USER
附注
疑问：一定可以得到simple line drawings吗？应该是可以的，因为这个时候如果有internal face，那么就可以沿着internal face继续分割

IBM_USER
附注
Merging: 重点在于坐标的计算

(a) (b) (c) (d)

bO bO

1aO
2aO

Fig. 7. (a) A line drawing. (b) Two separated line drawings. (c)
Incompatible objects Oa1 andOb. (d) Compatible object Oa2 and
Ob.

While fixingOb, we modify the depths of all the vertices of
Oa by

z0i = μb +
σb
σa
(zi − μa), i = 1, 2, · · · ,M, (4)

where z1−M denote the depths of all theM vertices of Oa.
Finally, Oa andOb are merged by forcing their correspond-
ing vertex depths of f∗ to be the same, i.e.,

z00ai = z00bi =
z0ai + zbi

2
, i = 1, 2, · · · ,K, (5)

where z0a1, z0a2, · · · , z0aK are part of the modified vertices of
Oa on f∗.
Our visual system can interpret a line drawing as a 3D

object in two ways, which is well-known as the Necker cube
reversal perception, and this phenomenon also exists in 3D
reconstruction from a line drawing [20]. One example is
shown in Fig. 7 where the lower line drawing in Fig. 7(b)
may lead to one of the two 3D objects Oa1 in Fig. 7(c) and
Oa2 in Fig. 7(d). Incompatible gluing of Oa1 and Ob hap-
pens. To solve this problem, we can turn Oa1 to Oa2 by
multiplying −1 to all the depths of the vertices of Oa1. Be-
fore doing this, we need to check if two objects Oa and Ob

are compatible. Let

s = sgn
¡ NX
i=1

(zai − μa)(zbi − μb)
¢
. (6)

If s = 1, Oa and Ob are compatible; if s = −1, Oa and Ob

are not.

5.3. The Complete 3D Reconstruction Algorithm
The outline of the complete 3D reconstruction algorithm

is summarized as follows.

1. Separate the input line drawing into simpler line draw-
ings along the internal faces;

2. Reconstruct the 3D objects from the separated line
drawings independently;

3. Merge these 3D objects to form a complete object;

4. Fine-tune the complete object.

Steps 1, 2, and 3 have been described in the previous sec-
tions. Step 4 is to fine-tune the complete object by perform-
ing the minimization of the objective function in (1) using
the input line drawing. This fine-tuning step can correct the
deformation caused by (5). The initial values of the depths
in this step are the depths of the complete object obtained
in step 3. Our experiments show that using step 4 usually
generates a better result.

6. Experimental Results
In this section, we show a number of examples to demon-

strate the performance of our approach. The algorithm is
implemented using Visual C++, running on a PC with 3.4
GHz Pentium IV CPU. The weighting factors λ1−5 in (1)
are chosen to be 100, 1, 20, 15, and 20 respectively. These
values are obtained by a few experiments first and then fixed
in the reconstruction of all the objects. Fig. 8 shows a set
of results. For each input line drawing, we give the line
drawing separation result and the 3D reconstruction result
displayed in two views, with different colors indicating the
faces. From Fig. 8, we can see that our algorithm success-
fully partitions the line drawings and generates expected 3D
objects. It is worth mentioning that most of the objects
in Fig. 8 are more complex than the most complex solid
objects given in the previous papers for 3D reconstruction
from single line drawings.
We also implement Lipson and Shpitalni’s algorithm

[16] for comparison, which can handle most complex ob-
jects among the previous methods. For the first 4 simpler
line drawings in Fig. 8, their algorithm can obtain expected
3D objects. However, it fails to handle the rest of the line
drawings. Its failed results reconstructed from the 6th and
7th line drawings are shown in Fig. 9.
The computational time of our algorithm varies with dif-

ferent drawings, depending on their complexity. For the line
drawings in Fig. 8, it ranges from 0.2 second to 96 seconds.
Of the four steps in the algorithm (see Section 5.3), step 4
(fine-tuning) takes most of the time. Our algorithm is faster
than Lipson and Shpitalni’s since the former uses fewer con-
straints and step 4 needs fewer iterations to converge.
From Fig. 8, we can see that some 3D reconstruction

results are not perfect, such as the 5th one and the 9th one.
To find a better fine-tuning scheme is our future work.

7. Conclusion
In this paper, we have proposed a novel divide-and-

conquer algorithm for 3D complex manifold reconstruction
from single line drawings. Our strategy is to 1) separate a
complex line drawing into simpler ones along its internal
faces, 2) reconstruct the 3D shapes from these simpler line

Fig. 8. A set of line drawings and their separation and reconstruction results. Different colors are used to indicate the faces.

Fig. 9. Failed results in two views reconstructed from the 6th and
7th line drawings in Fig. 8 by Lipson and Shpitalni’s method.

drawings, and 3) combine the shapes into a complete object.
The experiments show that our approach can handle more
complex objects than the solid objects appearing in the pre-
vious related papers. The future work includes seeking a
better fine-tuning scheme and optimizing the algorithm to
make it run faster.

References
[1] S. C. Agarwal and J. W. N. Waggenspack. Decomposition

method for extracting face topologies from wireframe mod-
els. Computer-Aided Design, 24(3):123–140, 1992.

[2] M. A. Armstrong. Basic Topology. Springer, 1983.
[3] S. Bagali and J. Waggenspack. A shortest path approach to

wirefreame to solid model conversion. Proc. 3rd Symp. Solid
Modeling and Application, pages 339–349, 1995.

[4] E. Brown and P. Wang. Three-dimensional object recov-
ery from two-dimensional images: a new approach. SPIE,
2904:138–147, 1996.

[5] L. Cao, J. Liu, and X. Tang. 3D object reconstruction from a
single 2D line drawing without hidden lines. ICCV, 1:272–
277, 2005.

[6] L. Cao, J. Liu, and X. Tang. 3D object retrieval using 2D line
drawing and graph based relevance feedback. Proc. ACM
Int’l Conf. Multimedia, pages 105–108, 2006.

[7] Y. Chen and J. Liu. Reconstructing 3D manifold object
from line drawings based on a divide-and-conquer approach.
Technicle Report, the Dept. of Information Engineering, The
Chinese University of Hong Kong, 2007.

[8] M. Clowes. On seeing things. Artificial Intelligence, 2:79–
116, 1971.

[9] P. Company, M. Contero, J. Conesa, and A. Piquer. An
optimisation-based reconstruction engine for 3d modeling by
sketching. Computers & Graphics, 28:955–979, 2004.

[10] P. Company, A. Piquer, M. Contero, and F. Naya. A sur-
vey on geometrical reconstruction as a core technology to
sketch-based modeling. Computer & Graphics, 29(6):892–
904, 2005.

[11] P. Debevec, C. Yaylor, and J. Malik. Modeling and rendering
architecture from photograph: a hybrid geometry and image-
based approach. SIGGRAPH’96, pages 11–20, 1996.

[12] D. Huffman. Impossible objects as nonsense sentences. Ma-
chine Intelligence, 6:295–323, 1971.

[13] D. E. LaCourse. Handbook of Solid Modeling. New York:
McGraw-Hill, 1995.

[14] Y. Leclerc and M. Fischler. An optimization-based ap-
proach to the interpretation of single line drawings as 3D
wire frames. IJCV, 9(2):113–136, 1992.

[15] H. Li. nD polyhedra scene reconstruction from single 2D line
drawing by local propagation. LNAI, 3763:169–197, 2006.

[16] H. Lipson and M. Shpitalni. Optimization-based reconstruc-
tion of a 3D object from a single freehand line drawing.
Computer-Aided Design, 28(8):651–663, 1996.

[17] J. Liu and Y. Lee. A graph-based method for face identifi-
cation from a single 2D line drawing. IEEE Trans. PAMI,
23(10):1106–1119, 2001.

[18] J. Liu, Y. Lee, and W. K. Cham. Identifying faces in a 2D
line drawing representing a manifold object. IEEE Trans.
PAMI, 24(12):1579–1593, 2002.

[19] J. Liu and X. Tang. Evolutionary search for faces from line
drawings. IEEE Trans. PAMI, 27(6):861–872, 2005.

[20] T. Marill. Emulating the human interpretation of line-
drawings as three-dimensional objects. IJCV, 6(2):147–161,
1991.

[21] P. Min, J. Chen, and T. Funkhouser. A 2D sketch interface
for a 3D model search engine. SIGGRAPH’02, Technical
Sketches, page 138, 2002.

[22] S. Ortiz. 3D searching starts to take shape. Computer,
37(8):24–26, 2004.

[23] L. Ros and F. Thomas. Overcoming superstrictness in line
drawing interpretation. IEEE Trans. PAMI, 24(4):456–466,
2002.

[24] H. Shimodaira. A shape-from-shading method of polyhe-
dral objects using prior information. IEEE Trans. PAMI,
28(4):612–624, 2006.

[25] I. Shimshoni and J. Ponce. Recovering the shape of poly-
hedra using line-drawing analysis and complex reflectance
models. Computer Vision and Image Processing, 65(2):296–
310, 1997.

[26] K. Shoji, K. Kato, and F. Toyama. 3-D interpretation of sin-
gle line drawings based on entropy minimization principle.
CVPR, 2:90–95, 2001.

[27] M. Shpitalni and H. Lipson. Identification of faces in a 2D
line drawing projection of a wireframe object. IEEE Trans.
PAMI, 18(10):1000–1012, 1996.

[28] K. Sugihara. An algebraic approach to shape-from-image
problem. Artificial Intelligence, 23:59–95, 1984.

[29] K. Sugihara. A necessary and sufficient condition for a pic-
ture to represent a polyhedral scene. IEEE Trans. PAMI,
6(5):578–586, 1984.

[30] K. Sugihara. Machine Interpretation of Line Drawings. MIT
Press, 1986.

[31] A. Turner, D. Chapman, and A. Penn. Sketching space. Com-
puter and Graphics, 24:869–879, 2000.

[32] P. A. C. Varley and R. R. Martin. Estimating depth from line
drawings. Proc. 7th ACM Symposium on Solid Modeling and
Application, pages 180–191, 2002.

